纳米制剂在重塑肿瘤微环境和增强免疫疗效中的研究进展

陈少伟, 应苗法, 顾胜龙, 赵蕊, 李明星

中国药学杂志 ›› 2020, Vol. 55 ›› Issue (2) : 85-89.

PDF(1009 KB)
PDF(1009 KB)
中国药学杂志 ›› 2020, Vol. 55 ›› Issue (2) : 85-89. DOI: 10.11669/cpj.2020.02.001
综述

纳米制剂在重塑肿瘤微环境和增强免疫疗效中的研究进展

  • 陈少伟1,2, 应苗法1, 顾胜龙1,2, 赵蕊1, 李明星1*
作者信息 +

Research Progress of Nano-preparation in Remodeling Tumor Microenvironment and Enhancing Immune Efficacy

  • CHEN Shao-wei1,2, YING Miao-fa1, GU Sheng-long1,2, ZHAO Rui1, LI Ming-xing1*
Author information +
文章历史 +

摘要

肿瘤屏障以及肿瘤组织微环境的改变导致肿瘤免疫疗法的治疗受限,不良反应增多。近年来,纳米制剂在肿瘤免疫治疗过程中,对于调控免疫缺陷、改善肿瘤组织微环境、增强免疫疗效等方面取得了许多新的进展。笔者主要对影响肿瘤免疫治疗疗效的肿瘤微环境因素进行阐述,并对纳米制剂用于重塑肿瘤微环境的策略进行综述。

Abstract

Because of the tumor barrier and the microenvironment of tumor tissue, the treatment of tumor immunotherapy is limited and increased adverse reactions. In recent years, nano-preparation has made many new advances in the process of tumor immunotherapy for regulating immune deficiency, remodeling tumor tissue microenvironment, and enhancing the effect of immunotherapy. This article mainly describes the microenvironmental factors of affecting the efficacy of tumor immunotherapy, and reviews the strategies of nano-preparation for remodeling the tumor microenvironment.

关键词

纳米制剂 / 肿瘤微环境 / 重塑 / 免疫治疗

Key words

nano-preparation / tumor microenvironment / remodeling / immunotherapy

引用本文

导出引用
陈少伟, 应苗法, 顾胜龙, 赵蕊, 李明星. 纳米制剂在重塑肿瘤微环境和增强免疫疗效中的研究进展[J]. 中国药学杂志, 2020, 55(2): 85-89 https://doi.org/10.11669/cpj.2020.02.001
CHEN Shao-wei, YING Miao-fa, GU Sheng-long, ZHAO Rui, LI Ming-xing. Research Progress of Nano-preparation in Remodeling Tumor Microenvironment and Enhancing Immune Efficacy[J]. Chinese Pharmaceutical Journal, 2020, 55(2): 85-89 https://doi.org/10.11669/cpj.2020.02.001
中图分类号: R944   

参考文献

[1] JOYCE J A, FEARON D T. T cell exclusion, immune privilege, and the tumor microenvironment. Science, 2015, 348(6230):74-80.
[2] SPILL F, REYNOLDS D S, KAMM R D, et al. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotech, 2016, 40: 41-48.
[3] SPRANGER S. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol, 2016, 28(8):383-391.
[4] SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunother. Cell, 2017, 168(4):707-723.
[5] REKHA M R, SHARMA C P. Oral delivery of therapeutic protein/peptide for diabetes-future perspectives. Int J Pharm, 2013, 440(1):48-62.
[6] LANITIS E, IRVING M, COUKOS G. Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol, 2015, 33: 55-63.
[7] CORZO C A, CONDAMINE T, LU L, et al. HIF-1 alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med, 2010, 207(11):2439-2453.
[8] QIAN B Z, POLLARD J W. Macrophage diversity enhances tumor progression and metastasis. Cell, 2010, 141(1):39-51.
[9] GABRILOVICH D I, OSTRAND-ROSENBERG S, BRONTE V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol, 2012, 12(4):253-268.
[10] CURIEL T J, COUKOS G, ZOU L H, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 2004, 10(9):942-949.
[11] BUCALA R, RITCHLIN C, WINCHESTER R, et al. Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts. J Exp Med, 1991, 173(3):569-574.
[12] SEIBERT K, MASFERRER J L. Role of inducible cyclooxygenase (Cox-2) in inflammation. Receptor, 1994, 4(1):17-23.
[13] BAGGIOLINI M. Chemokines and leukocyte traffic. Nature, 1998, 392(6676):565-568.
[14] ZARIF J C, TAICHMAN R S, PIENTA K J. TAM Macrophages promote growth and metastasis within the cancer ecosystem. Oncoimmunol, 2014, 3(7):e94173.
[15] MUSETTI S, HUANG L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. Acs Nano, 2018, 12(12):11740-11755.
[16] LIU Y, CAO X T. The origin and function of tumor-associated macrophages. Cell Mol Immunol, 2015, 12(1):1-4.
[17] CARMELIET P, JAIN R K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801):249-257.
[18] SHWEIKI D, ITIN A, SOFFER D, et al. Vascular endothelial growth-factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992, 359(6398):843-845.
[19] KOUREMBANAS S, HANNAN R L, FALLER D V. Oxygen-tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial-cells. J Clin Invest, 1990, 86(2):670-674.
[20] NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014, 41(1):49-61.
[21] ALDERTON G K. Turning macrophages on, off and on again. Nat Rev Immunol, 2014, 14(3):136-137.
[22] SHANG B, LIU Y, JIANG S J, et al. Prognostic value of tumor-infiltrating FoxP3(+) regulatory T cells in cancers: a systematic review and Meta-analysis. Sci Rep-Uk, 2015, 5: 15179.
[23] KIM B Y S, RUTKA J T, CHAN W C W. Current concepts: nanomedicine. New Engl J Med, 2010, 363(25):2434-2443.
[24] CHO K J, WANG X, NIE S M, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res, 2008, 14(5):1310-1316.
[25] ZAMBONI W C, TORCHILIN V, PATRI A K, et al. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res, 2012, 18(12):3229-3241.
[26] BULBAKE U, DOPPALAPUDI S, KOMMINENI N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics, 2017, 9(2):12.
[27] HODI F S, O′DAY S J, MCDERMOTT D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med, 2010, 363(8):711-723.
[28] SYN N L, TENG M W L, MOK T S K, et al. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol, 2017, 18(12):731-741.
[29] KWAK G, KIM D, NAM G H, et al. Programmed cell death protein ligand-1 silencing with polyethylenimine-dermatan sulfate complex for dual inhibition of melanoma growth. Acs Nano, 2017, 11(10):10135-10146.
[30] PRUITT S K, BOCZKOWSKI D, DE ROSA N, et al. Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol, 2011, 41(12):3553-3563.
[31] GOODWIN T J, SHEN L M, HU M Y, et al. Liver specific gene immunotherapies resolve immune suppressive ectopic lymphoid structures of liver metastases and prolong survival. Biomaterials, 2017, 141: 260-271.
[32] CHRISTIAN D A, HUNTER C A. Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy-Uk, 2012, 4(4):425-441.
[33] KLEINERMAN E S, SCHROIT A J, FOGLER W E, et al. Tumoricidal activity of human monocytes activated in vitro by free and liposome-encapsulated human lymphokines. J Clin Invest, 1983, 72(1):304-315.
[34] SMYTH M J, TENG M W L, SWANN J, et al. CD4(+)-CD25(+) T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol, 2006, 176(3):1582-1587.
[35] WRZESINSKI S H, WAN Y S Y, FLAVELL R A. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res, 2007, 13(18):5262-5270.
[36] LIU V C, WONG L Y, JANG T, et al. Tumor evasion of the immune system by converting CD4(+) CD25(-) T cells into CD4(+) CD25(+) T regulatory cells: role of tumor-derived TGF-beta. J Immunol, 2007, 178(5):2883-2892.
[37] XU Z H, WANG Y H, ZHANG L, et al. Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. Acs Nano, 2014, 8(4):3636-3645.
[38] HOLTZHAUSEN A, ZHAO F, EVANS K S, et al. Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and immunotolerance: opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunol Res, 2015, 3(9):1082-1095.
[39] PIERSMA B, BANK R A, BOERSEMA M. Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ converge. Front Med (Lausanne), 2015, 2: 59.
[40] LIU Q, ZHU H, TIRUTHANI K, et al. Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. Acs Nano, 2018, 12(2):1250-1261.
[41] ZHU S J, NIU M M, O′MARY H, et al. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm, 2013, 10(9):3525-3530.
[42] KAKOSCHKY B, PLELI T, SCHMITHALS C, et al. Selective targeting of tumor associated macrophages in different tumor models. PLoS One, 2018, 13(2):e0193015.
[43] CHOO Y W, KANG M, KIM H Y, et al. M1 Macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors. Acs Nano, 2018, 12(9):8977-8993.
[44] ROSENBERG S A, YANG J C, RESTIFO N P. Cancer immunotherapy: moving beyond current vaccines. Nat Med, 2004, 10(9):909-915.
[45] MOCELLIN S, MANDRUZZATO S, BRONTE V, et al. Part I: vaccines for solid tumours. Lancet Oncol, 2004, 5(11):681-689.
[46] MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378):480-489.
[47] SHAHBAZI M A, SANTOS H A. Revolutionary impact of nanovaccines on immunotherapy. New Horiz Transl Med, 2015, 2(2):44-50.
[48] HENRIKSEN-LACEY M, KORSHOLM K S, ANDERSEN P, et al. Liposomal vaccine delivery systems. Expert Opin Drug Del, 2011, 8(4):505-519.
[49] TORRES M P, WILSON-WELDER J H, LOPAC S K, et al. Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomater, 2011, 7(7):2857-2864.
[50] KLINMAN D M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol, 2004, 4(4):249-258.
[51] LYNN G M, LAGA R, DARRAH P A, et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat Biotechnol, 2015, 33(11):1201-1210.
[52] ZHANG Z P, TONGCHUSAK S, MIZUKAMI Y, et al. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials, 2011, 32(14):3666-3678.
[53] HU X M, WU T T, QIN X Y, et al. Tumor lysate-loaded lipid hybrid nanovaccine collaborated with an immune checkpoint antagonist for combination immunotherapy. Adv Healthc Mater, 2019, 8(1):1800837.
[54] KUAI R, OCHYL L J, BAHJAT K S, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater, 2017, 16(4):489-496.
[55] KEPP O, SENOVILLA L, KROEMER G. Immunogenic cell death inducers as anticancer agents. Oncotarget, 2014, 5(14):5190-5191.
[56] LIU Q, CHEN F, HOU L, et al. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. Acs Nano, 2018, 12(8):7812-7825.
[57] ADKINS I, FUCIKOVA J, GARG A D, et al. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology, 2014, 3(12):e968434.
[58] MITSUNAGA M, OGAWA M, KOSAKA N, et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med, 2011, 17(12):1685-1691.
[59] MAZZIERI R, PUCCI F, MOI D, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell, 2011, 19(4):512-526.
[60] SUN L, LIU Y J, YANG Z Z, et al. Tumor specific delivery with redox-triggered mesoporous silica nanoparticles inducing neovascularization suppression and vascular normalization. Rsc Adv, 2015, 5(68):55566-55578.
[61] DU S, XIONG H, XU C, et al. Attempts to strengthen and simplify the tumor vascular normalization strategy using tumor vessel normalization promoting nanomedicines. Biomater Sci, 2019, 7(3):1147-1160.
[62] LI W, LI X, LIU S, et al. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial-mesenchymal transition inhibition. Int J Nanomed, 2017, 12: 3509-3520.
[63] HU C H, LIU X Y, RAN W, et al. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials, 2017, 144: 60-72.
[64] HAN X X, LI Y Y, XU Y, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nat Commun, 2018, 9: 3390.
[65] ZHAO J, XIAO Z, LI T, et al. Stromal modulation reverses primary resistance to immune checkpoint blockade in pancreatic cancer. Acs Nano, 2018, 12(10):9881-9893.

基金

浙江省自然科学基金项目资助(YY19H310010)
PDF(1009 KB)

Accesses

Citation

Detail

段落导航
相关文章

/